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MFIX Overview



MFiX — Open-source multiphase CFD code [N=[now
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4,500+ all-time MFIX registrations
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Examples of MFiX GUI
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Gas-solids flow in a fluidized bed reactor

Particle flow field in
NETL's Circulating
Fluidized Bed (CFB) system.

_ Particle
recirculation

Air—»
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Shaffer F, Gopalan B. The Science and Beauty of Fluidization
arXiv:1311.1058v1 [physics.flu-dyn] 1 Nov 2013




MFiX offers a suite of multiphase models [N=|urow
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Direct Numerical Simulation: Track all particles
and resolve the gas flow around them

AVIF X oem Discrete E!ement Method:.Track all p.artlcles; use
drag laws instead of resolving gas-solids boundary

Hybrid: Some of the particle are tracked; others
treated as a continuum

”MFEX Hybrid

. Two-Fluid Model: Particles modeled
WFIXTFM as a continuum or a second fluid

Time to Solution

9 9
@k@/ *:.
(o) . Particle-in-Cell : Track parcels
féf '0/77@ MIFiX e c or clouds of particles °“
Reduced Order Models: '
Simplified models for

specialized applications

Model Uncertainty
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CFD-DEM N=|anona:
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Gas Phase — Navier-Stokes like equations * Unresolved flow near particle-
5 o fluid interface - gas-particle
a(fgpg) + a_xj (ggpgUgj) =0 forces drag, added mass, lift ...

* No numerical diffusion in

article phase
+ fgi T &P P )
0x; o ¥ &g 81 * Particle contacts are resolved

aP 0T
T (8gnggl) T (Sgnggj Ugi) = —&g 9%, R

Soft-sphere model

Particles — Newton’s law
dxpl-
dt

du
pl —
My —r = Mpdi + fpi +m, Acour

1..% — T Ao describes both enduring
ij pi . .
dt contacts and collisions
Garg, R., Galvin, J., Li, T., and Pannala, S. (2012). Documentation of open-source MFIX-DEM software for '-:MFix DEM

gas-solids flows, From URL https://mfix.netl.doe.gov/documentation/dem_doc_2012-1.pdf
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Two-Fluid Model
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Gas and Granular Phases
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Current workhorse in industry
Cannot resolve distribution in
particle-scale properties: size,
density, chemical conversion
Cannot describe regions where
strain rate is zero

4 9/ o/' 0. ) Unresolved particle contacts -
Granular QOO0 —— 9\0‘ / °+ o granular stress
vess. e~ T e o

\_ Frictional theory

Kinetic theory of granular row‘

Granular energy transport equation

3 0O 00| _ 0 90m) aUmi o mJ
—€ — - = K T — &
5 mPm ot mj an axj m ax] mvij (3 m mPm/m
1. Syamlal, M., Rogers, W., & O'Brien, T. J. (1993). MFIX Documentation: Theory Guide (No. DOE/METC-94/1004 (DE94000087)
2. Benyahia, S., Syamlal, M., O'Brien, T.J., “Summary of MFIX Equations 2012-1", From URL HMF;X FEM

https://mfix.netl.doe.gov/documentation/MFIXEquations2012-1.pdf , January 2012
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Gas-solids flow research reactors

Vortex Bed

\

High-G Reactors

apture Unit

Circulating Fluidize

oving Bed

Spouted Bed
Rectangular Bed

S. DEPARTMENT OF

TL

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY




Reactor optimization based on CFD

Optimized Flow for Separation — Model and Experiment

Discharge particle counts
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Mini circulating fluidized bed N
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Axial pressure gradient N = [TonaL
TLJRSCRR0R
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AP/AL [kPa/m]
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8
Height [m]
Comparison of MFIX-TFM and MFIX-DEM (Coarse-grained) results with experimental data

1. T. Li, MFiX simulations of gas-solid flow in large scale fluidized bed reactors, the 39th IFPRI Annual General Meeting, Jun. 17-21, 2017, Philadelphia.
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Micro-Encapsulated Carbon Sorbent (MECS) = [NERay -

T L [FESHNoLoGy
COs H,0 LABORATORY

T, K]
324
' lsm.

g .

' ism.
313

aqueous
arbonate solution

permeable shell

MECS" capsules - Elastic, deformable shell

(Image: John Vericella, LLNL) - Capsule size/density changes
» Precipitation of solids inside capsule
« Water loss/uptake during C0, capture
« Complex liquid equilibrium reactions

MECS Capsule model

MECS fluidized
bed simulation

Vericella et al., Nature Commes., v. 6, 2015
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Integrated Waste Treatment Unit, Idaho

Guide performance improvement of nuclear waste clean up reactor

Voidage
-1.00
Eo.s&

Denitration and Carbon Reduction
Mineralization Reformer Reformer
I—-

Process rcoz. H,0, N, O,
gas . .

filter =

* Evaporates water

+ Reduces nitrates I

+ Volatize and H,0, N,, CO,
reform organics €O, Hy,
CH,, and
short-chain

organics

Coal —.
SBW droplets |FIuidizingGas

Solids Product

Low Flow
0.6 gpm

Fluidizing Gas
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Time: 15.000

High Flow
1.25 gpm

Time: 15.000

Voidage

1.00
EO.%

=0.72

1L

0.57

—_—

-0.43
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Biofuels reactor N = [NAnoNAL
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Upgrading reactor models to help pilot-scale testing LABORATORY

Riser: Height: 7.05 m,
diameter: 0.092 m

Outlet diameter: 0.038 m
Solids inlet diameter: 0.049 m

Pyrolysis vapor inlet diameter:
0.047 m

Distributor: 16 holes with
diameter of 0.00625 m

U.S. DEPARTMENT OF Energy Efﬁciency &

— - . C C P C ENERGY Renewable Energy

Upgrading Reactor Riser Geometry s BIOENERGY TECHNOLOGIES OFFICE
P9 g
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Using Solids as Heat Transfer “Fluid” for CSP Receivers

Challenge: Molten salts unstable > 6000C
Idea: Use inert solids (e.g., sand) as heat transfer “fluid”
e can operate at higher T and thus increased efficiency

» good thermal storage for on/off diurnal cycle
e Sand is inexpensive

Particle Inflow
T T

o0

o0

Particle

CSP Power Tower o, A N [ Receiver

Pl: Christine Hrenya (Univ. CO)

LiNREL *‘RIDGE Co-PI's: Zhiwen Ma (NREL)
T — Sreekanth Pannala (ORNL) 1Shot

OAK




Using Solids as Heat Transfer “Fluid” for CSP Receivers

I = D,=200um

Symbols are DEM
3.5F @ D,=300um I

Continuum

I x 2nd Row
““I Good heatq "
X 25Ftransfer

MFIX DEM simulations
(~107 particles on Titan)
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Morris et al., AIChE J. (2016)
Morris et al., Solar Energy (2016) .
Morris et al., Int. J. Heat Mass Transfer (2015) 1Shot




Volcanic hazards from explosive eruptions

Soufriere Hills volcano MFiX-TFM simulation

1. Dufek, J., and Bergantz, G.W, 2007, “Dynamics and deposits generated by Kos Plateau Tuff eruption”, G3, vol. 8, no. 12
2. Ruprecht, P., Bergantz, G.W. and Dufek, J., 2008, “Modeling of gas driven magmatic overturn”, G3, vol. 9, no. 7.
3. Dufek, J. and Manga, M., 2008, “In situ production of ash in pyroclastic flows”, J. Geophysical Res., vol. 113

George Bergantz/University of Washington



Path of ‘magma mush’ inside a volcano

t* = 0.1249
_Crystal mixing by granular vorticies Ll = 01606

Crystals entrained
_—" into mixing bowl

G.W. Bergantz, J. M. Schleicher and A. Burgisser, 2015. “Open-system dynamics and mixing in magma mushes”, Nature Geoscience, 8, 793-797.

George Bergantz/University of Washington AVIFEX oem



MFIX-Exa Project
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The Exascale Computing Project (ECP)

Collaboration |

l 2 US Department of
Energy organizations I
800 researchers

» Office of Science (22 laboratory and agency l .
* National Nuclear partners; 39 universities) Drive pre-exascale

Security Administration ~ engaged in: science, application
development, hardware

» 66 software projects and software R&D
« 25 science application to ensure that the US
projects has a capable exascale

- 5 co-design centers ecosystem in 2021
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What is a capable exascale computing system?

 Delivers 50x the performance of today’s 20 PF systems, supporting applications

that deliver high-fidelity solutions in less time and address problems of greater
complexity

» Operates in a power envelope of 20-30 MW
This ecosystem

* |s sufficiently resilient (perceived fault rate: <1/week) will be developed using
a co-design approach

* Includes a software stack that supports a broad to deliver r?ew Eﬁﬂware,
spectrum of applications and workloads applications, platforms,

and computational science
capabilities at heretofore
unseen scale
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From Giga to Exa, via Tera & Peta*

1000
Exa
3 Peta
C
s !
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€ 100 1.5x from transistor
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Exascale simulation for the design of
industrial-scale chemical reactors

Goal: Develop an efficient high-fidelity multiphase flow
modeling capability to aid in the design of industrial-scale
chemical reactors

Simulation with high-fidelity, physics-based models is
essential to scaling up from lab - pilot > commercial
scale reactors

* Reduction in cost

* Reduction in time to deployment

* Risk mitigation at large scales

Proposed increase in fidelity will aid in the development

L%

of CO, capture technology (supported by DOE-FE) as | N

well as unlock the ability to simulate a host of relevant Lab-scale testing of a Petra Nova, world's largest post-
. . ) novel CO, capture combustion CO, capture plant,

prOblemS In energy, chemical processing and method at NETL began operation in January 2017

pharmaceutical industries

-\
NATIONAL = @ \ EXASCALE
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MFIX-Exa challenge problem
Simulate 1 MWe chemical looping reactor with CFD-DEM

1 MWe

0| kW I

POWER Time: 0.000000 .-cI

POWER !

Particle Count: 60 x10° Particle Count: 5 x10” Particle Count: 100 x 10?
Time to Solution: 600 days Time to Solution: 0.5 days Time to Solution: 2 days
Time-to-solution is estimated for 5 minutes of real time ’;\\\
in all cases; the 2023/2026 values are guestimates. NATIONAL @ i ) Eéggﬁ?‘r‘“—\%
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o

Challenge Problem

&

28 Exascale Computing Project

Achieving the desired performance in MFIX-Exa
The 10 Year Challenge Problem

Risk mitigation strategies =
«  Hybrid method = Improved solver

» Coarse grained DEM + Modern low-Ma projection method
» Adaptive mesh refinement

[ Increased computational power

Parallel Performance

» Balanced fluid & particle work load

» Optimized particle-particle interaction
tracking: increased on-node performance

Massive Parallel Scalabili and reduced off-node communication
assive Parallel Scalability + Scalable linear equation solver

Exascale Machine r.k

Baseline: MFIX-2016-1

f‘;‘\\

MFX-.. =P #ERe
e
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Boulder




MFIX-Exa brings together three teams and two codes

- MFiXc.

(‘-MFaxJ == [AMReX}

N NATIONAL
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Boulder

« 60+ years of experience in
multiphase modeling and
MFIX (NETL and CU)

30+ years of development  Block-structured AMR

« 12 developers at NETL software framework
e 60+ years of experience in ° 4,000+ registered users Supported by ECP Co-
large-scale, multiscale * 175+ downloads per month Design Center
multiphysics applications » 200+ citations per year * Supports multiple DOE
(LBNL) » Applied for reactor design codes:_ accelerator _
and troubleshooting in fossil, ~ modeling, astrophysics,
+ 90+ years of experience in bio, nuclear, and solar combustion, cosmology, and
high performance computing energy; chemicals industry; subsurface

and nuclear waste treatment * Long development history

—
N=|NanonaL
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,'”:m r‘i SINREL Block-Structured Adaptive Mesh Refinement
A M Re X 3 Framework. Support for hierarchical mesh and

Arganne particle data with embedded boundary capability.

Open source software =

= Support for solution of PDE’s on hierarchical adaptive mesh with particles it foi e
and embedded boundary representation of complex geometry

« Core functionality in C++ with frequent use of Fortran90 kernels
= Support for multiple modes of time integration

= Provides support for explicit and implicit single-level and multilevel mesh
operations, multilevel synchronization, particle, particle-mesh and particle-
particle operations

= Hierarchical parallelism -- hybrid MPI + OpenMP with logical tiling to work
efficiently on new multicore architectures

: F |

Examples of AMReX applications

. . . o ==

= Highly efficient parallel I/O for checkpoint/restart and for visualization — o i o e
native format supported by Visit, Paraview, yt

= Native multilevel geometric multigrid solvers for cell-centered and nodal
data

Applications: accelerator modeling, astrophysics,

combustion, cosmology, multiphase flow...
‘ https://www.github.com/AMReX-Codes/amrex ‘ 30




First version of MFIX-Exa developed and verified

Many verification cases

06 0.005
r 0.004
b2 r 0.003
" Freely falling particle
E F —_
- 0.001 E
S 03 @ L o s . L
: o= with wall collision
02
*  MFIX-Exa - -0.002
01 © R2016-1 Error r -0.003
MFIX-Exa Error - -0.004
0 -0.005
0 0.1 02 03 0.4 0.5 0.010

Couette flow o
in a channel

—— Analytic
o R20161
MFIX-Exa
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BERKELEY LAB

Four benchmark cases that mimic
sections of a CLR

Boulder

Settling Bed

Riser Flow

Homogeneous
Cooling System
f'.._.,,,‘\\
— i Y 2ems
MFiX-. (S|




Preliminary performance analysis conducted

Scaling of MFIX-Exa and MFIX-2016-1 Release on Cori-KNL (run for 50ms)

32 Exascale Computing Project

Average Time per Time-step
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MFIX-Exa Scaling for Fluid Bed Benchmark

¥ 2016-1 Release
® MFI¥-Exafrom t=1.0
@ MFiX-Exafrom t=0.0
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MFIX-Exa released with hybrid parallelism
and dynamic load balancing

« Take full advantage of many-core architectures through Hybrid parallelism (MPI + OpenMP)

* Minimize run time through Dynamic load balancing

Two load balancing
strategies

=5

Based on number of grid cells Based on number of particles

T
\\ EXASCALE

g}: MFiX-. _\(\-— }—’ COMPUTING

NATIONAL
. . TL|5shNoLocy
33 Exascale Computing Project LABORATORY




MFIX-Exa Status and Development Plans

" Migrated MFIX-DEM )
hydrodynamics to the

AMReX framework. EB EB Fluid CLR
el e Particles Demonstration
o Performance!
: Replace Performance!
SIMPLE Performance!
\_
O O O @ O O 5 0 0O __® >
2017 2019

34 Exascale Computing Project
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NETL

J. Carney

J. Dietiker
J. Finn

B. Gopalan
C. Guenther
T. Li

J. Musser*
W. Rogers
F. Shaffer
D. VanEssendelft
J. Weber

* MFIX-Exa co-PI
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Thank You!

External Organizations

A. Almgren (LBNL)*

J. Bell (LBNL)*

G. Bergantz (U. Washington)
C. Hrenya (CU)*

T. Hauser (CU)*

For more information
https://mfix.netl.doe.qov/

Madhava Syamlal, Pl, MFIX-Exa project
madhava.syamlal@netl.doe.qgov
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